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A review. Quantum detection theory is a reformulation, in quantum-mechanical 
terms, of statistical decision theory as applied to the detection of signals in random 
noise. Density operators take the place of the probability density functions of conven- 
tional statistics. The optimum procedure for choosing between two hypotheses, and 
an approximate procedure valid at small signal-to-noise ratios and called threshold 
detection, are presented. Quantum estimation theory seeks best estimators of parameters 
of a density operator. A quantum counterpart of the Cram6r-Rao inequality of 
conventional statistics sets a lower bound to the mean-square errors of such estimates. 
Applications at present are primarily to the detection and estimation of signals of 
optical frequencies in the presence of thermal radiation. 
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1. Q U A N T U M  STATISTICAL T H E O R Y  

Much of statistical theory can be viewed as the calculation of expected values. Clas- 
sically, a system characterized by the variables Xl, x2 ..... x ,  has associated with it a 
probability density function (pdf) p ( x z ,  x2 . . . .  , x,~), and the expectations of  certain 
measurable funct ionsf (x l ,  x2 ,..., x~) 

f* f* E[f (x l  .... , Xn)] . . . .  f ( x l  . . . .  , x ~ )  p ( x l  . . . .  , X,~) d x l  "'" dx,~ (1) 
- - o ~  - - o o  

are required. Quantum-mechanically, a system is described by a density operator p, 
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which is a function of the dynamical variables of the system, and the expected value 
of an observable whose quantum-mechanical operator is F is given by the trace S 

E(F) = Tr(pF) (2) 

The density operator p is the quantum counterpart of the pdfp(xl  ,..., x~). When, 
as in the classical limit, p is diagonal in a representation based on the simultaneous 
eigenstates [xa "'" xn} of the operators Xa ,..., Xn corresponding to the variables 
x l , . . . , x ~ ,  

tO = -ee " "  J -ae [ X l  "'" X n )  p ( X 1  ' " "  X n ) ( X 1  "'" X n  [ dX1 "'" d x n  ' (3) 

the expectation in Eq. (2) reduces to Eq: (1), with 

f(x~ ,..., x , )  = (x~ . . .  x ,  IF  x~. . .  x , }  (4) 

Quantum statistical theory includes the classical as a special case2 
Modern statistical theory also has a normative and methodological aspect, 

which appears in its treatment of hypothesis testing and estimation. It seeks the best 
procedures for making statements about the condition of a system under observation, 
statements that are framed as decisions among hypotheses about the system, or as 
estimates of numerical parameters characterizing it. The statements are based on 
observational data subject to unavoidable random error. The best methods are those 
that minimize the influence of error, and by evaluating their quality, it is possible 
to determine the ultimate limits imposed by statistical uncertainty on the accuracy of 
decisions and measurements. (3) 

in classical physics, statistical uncertainty is largely due to the presence of 
random noise, which originates primarily in molecular chaos. Statistical hypothesis- 
testing or decision theory has been extensively applied to the detection of acoustic and 
electromagnetic signals in noise, and permits defining the weakest signal that can be 
detected with a specified probability of error, as a function of the strength of the 
interfering noise. r Estimation theory has been applied to the measurement of 
signal parameters such as amplitude, carrier frequency, and time of arrival, which are 
important in telemetry and radar. The noise sets a limit to the accuracy of such 
measurements. 

The subject of this review is the formulation of statistical decision and estimation 
theory in quantum-mechanical terms. It involves replacing the probability density 
functions that appear in the classical theory by quantum-mechanical density operators. 
Although the context will be the detection of signals at optical frequencies and the 
estimation of their parameters, the application of these concepts is not limited thereto. 
The aim of quantum detection and estimation theory is to determine how the reliability 
of decisions and parameter estimates is affected both by random noise and by 
quantum-mechanical uncertainty. 

2 For a review of the theory of density operators, see the work of Fano m and Ter Haar. (2) 
a The word "classical" is used here to mean "nonquantum-mechanical." It does not indicate 

venerability, most of what is here called "classical statistical theory" being younger than quantum 
mechanics itself. 
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1.1. Classical Decision and Estimation Theory  

Decision theory treats the choice among hypotheses about the system at hand. 
In the simplest binary decision, there are two hypotheses, exemplified by the absence 
or presence of a signal s(t)  of known form in the input x( t )  to a receiver during a 
certain observation interval (0, T). The hypotheses are then: 

1. Ho (null hypothesis): x( t )  = n(t). 
2. H i (alternative hypothesis): x( t )  = n(t)  -k s(t). 

Here n(t)  is a random process representing noise with certain specified statistical 
properties. We suppose that the decision is to be based on n samples xi  = x(t i)  
of the input x( t )  during the interval (0, T), (i = 1, 2 ..... n). The pdf 's  p0(xz ..... xn) 
and Pz(Xl ..... xn) of these data under the two hypotheses are known. The best method 
of deciding between them is sought. 

The adjective "best"  is principally defined in two ways. In "Bayesian" decision 
theory, the observer knows the prior probabilities ~ and (1 --  ~) of  hypotheses H0 
a n d / / 1 ,  and he also knows the four costs Cij of  choosing hypothesis Hi when Hj is 
true (i, j = 0, 1). ~ The costs are entailed by the actions and circumstances 
following the decision, which is to be made in such a way that the average cost is 
minimum. This so-called "Bayes strategy" requires HI  to be selected whenever 
(Helstrom, (s) pp. 82, 91; Van Trees, (9) p. 26) 

A(x1  ,..., xn) = pl(X1 ' " "  Xn) ~(C1o - -  Coo) 
po(xz  ..... x~)  >~ (1 - ~)(co~ - G ~ )  = A o  (5) 

Otherwise, H0 is selected. The function A(x~ .... , x~) is called the likelihood ratio. 
Decisions among more than two hypotheses can be treated in a similar manner. 

Often, the costs associated with the various errors can be set equal; then it is 
the average probability of  error that is to be minimized. The best strategy is then to 
choose the hypothesis whose posterior or conditional probability, given the data 
(Xl .... , xn), is greatest (Helstrom, (8~ p. 194; Van Trees, tg) p. 46). The posterior 
probability can be expressed in terms of likelihood ratios between pairs of  pdf ' s  for 
the data under the several hypotheses. 

The second way of defining a "best"  binary decision procedure is provided by 
the theory of Neyman and Pearson. tll,~2) Two kinds of  errors can occur. Choosing 
//1 when H 0 is true is called an error of  the first kind, or false alarm; its probability 
under a given decision strategy is denoted by Q0. Choosing H0 when/ /1  is true is an 
error of  the second kind, or false dismissal; its probability is QI �9 The complement 
Qa ----- 1 - -  Q~ is often called the probability of  detection2 That  strategy is now 
considered best that attains the maximum probability Qd of detection for a set false- 
alarm probability Q0. I t  leads to the same comparison of the likelihood ratio 

4 The Bayes whose name figures so largely here was the Rev. Thomas Bayes (1702-1761), whose 
paper "An Essay Toward Solving a Problem in the Doctrine of Chances" proposed basing decisions 
on posterior or conditional probabilities, a~ 
The notation Qo = c~ and Qd = fl is common in the statistical literature, where these probabilities 
are termed the size and the power of the test, respectively. 
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A(x~ ..... x,~) with a decision level A 0 as in Eq. (3), but with A 0 fixed so that the false- 
alarm probability equals the preassigned value (Helstrom, (s), pp. 87, 93; Van Trees, (9) 
p, 33). The Neyman-Pearson criterion dispenses with the prior probabilities and 
costs needed for the Bayesian approach, but is not easily generalized to decisions 
among more than two hypotheses. 

Estimation theory typically treats data x = (xl ,..., x,) whose joint pdf  
p(Xz ..... x~;O~, . . . ,  Ore)=p(x;  0) depends on some unknown parameters 0 = 
(01 ..... 0~) that are to be estimated. For  instance, the data may be samples xg = x(tj) 
of the input x( t )  = s(t; O) + n(t) to a receiver, composed of noise n(t) of known 
statistical properties and a signal s(t; e) depending on parameters e = (01 ,..., 0~) 
such as amplitude, time of  arrival, and carrier frequency. On the basis of  the n data x, 
the values of these parameters are to be estimated as accurately as possible. 

Estimation theory sets up a measure of the cost or seriousness of errors in the 
estimates 8 = ( 0 1  , . . . ,  0.rn ) of the parameters. The most common cost function is a 
weighted sum of the squared errors, 

C(8, O) = ~ w~(Ok --  Ok) 2 (6) 
k=Z 

The problem is to find estimates Ok = 01~(x~ .... , x~) as such functions of the data that 
the average cost is minimum. Of interest also are lower bounds on the sizes of the 
errors, measured usually by the mean-square deviations E(0k --  0k) 2, as well as the 
bias of each estimate, defined as the deviation E(Ok) --  Ok of the expected value of the 
estimate from the true value of the parameter (Helstrom, (a) Chap. VIII, p. 249; 
Van Trees, 19) w p. 52). 

1.2. The General izat ion to Ouantum Theory 

Central to classical decision and estimation theory are the pdf's p0(x), pl(x), and 
p(x; 0) of the outcomes of observations of the system. It is natural to consider anal- 
ogous theories based instead on quantum-mechanical density operators P0, Pz, and 
p(0) of the system, a generalization that leads to quantum decision and estimation 
theory.(t~-lS) 

The system under observation might, for instance, be a lossless cavity that 
functions as an ideal receiver of electromagnetic radiation. The cavity is initially 
empty. In one wall is an aperture that faces the source of the signal, and during an 
interval (0, T) when the signal, if present in the external field, is expected to arrive, 
the aperture is open. At time T, the aperture is closed, and thereafter the cavity 
contains background radiation and, possibly, a field due to the signal. The density 
operator of the field will be P0 when only background radiation is present (hypothesis 
H0) and Pz when a signal of the specified type has arrived (hypothesis H~). Detection 
involves a choice between these hypotheses. In particular, one would like to know the 
weakest signal that can be detected with a certain probability Qa as a function of the 
false-alarm probability Qo and the nature of the background radiation. 

If, on the other hand, the signal field is known to be present, it may be necessary 
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to measure certain of its parameters, such as its amplitude or carrier frequency. 
These can be regarded as parameters of the density operator p(O) = p(Oz ..... Ore) of the 
net field in the cavity. One would like to know the minimum mean-square errors with 
which the field parameters can be estimated, as functions of the characteristics of 
the signal and background fields. 

Crucial in quantum decision and estimation theory is the question of  which 
dynamical variables of the system shall be measured. In the classical theory, it is 
possible, in principle, to measure all the variables and to conceive of their having the 
joint probability density functions p0(x), p~(x), and p(x; O) required for setting up the 
optimum procedures. Quantum-mechanically, only observables--dynamical variables 
represented by Hermitian ope ra to r s -can  be measured, and since they are to be 
measured simultaneously on the same system, their operators must commute. Different 
sets of commuting observables may yield different costs in a Bayes decision or estima- 
tion strategy, and the problem remains of finding the set that entails the lowest cost 
of all. 

If  there exists a representation in which all the density operators involved are 
simultaneously diagonal, they all commute, and by working in this representation, 
the decision or estimation problem can be reduced to  one that can be handled by the 
classical theory. Quantum-mechanical decision and estimation theory is presently 
formulated entirely within the framework of the conventional interpretation of  
quantum mechanics, and questions of  the simultaneous measurability of variables 
whose operators do not commute have not been treated. 

2. B I N A R Y  D E C I S I O N S  

2.1. The Detection Operator 

A choice is to be made between two hypotheses about a system: H0, that its 
density operator is p0, and Hz ,  that its density operator is pz. The prior probability 
of H0 is ~, and of Hi is (1 -- ~), and the cost attendant upon choosing Hi when H~- 
is true (i,j = 0, 1) is Cij. Suppose that some set of  commuting observables Xz, X2 ..... 
has been measured, with outcomes xz, x2 ,.... The decision will be based on the value 
of some functionf(x~, x2 ,...) of  the outcomes. Equivalently, it could be based on the 
outcome of measurement of the operatorf(Xz,  JC 2 .... ). What operator should this be? 

All that we really require is that the outcome be one of two numbers, 0 and 1, 
and we choose H 0 if it is 0, Hi if it is 1. The opera torf (Xz,  X2 .... ) should therefore 
be one whose only eigenvalues are 0 and 1, and such an operator is a projection 
operator. We denote it by H and call it the detection operator. 

Which of all the projection operators H for the system is best? To determine it, 
we put down an expression for the average cost and minimize it over the set of all 
H's. The average cost depends on the probabilities Q0 and Qz of errors of the first 
and second kinds. The former is the probability under hypothesis H 0 that HI is chosen, 
that is, that measurement of/- /yields the value 1, 

Qo = pr{H--~ 1 [ Ho} = E(H I Ho) = Tr poll (7) 
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Similarly, 
Q1 = Tr[pl ( l  - - / - / ) ]  = i - -  Tr  plH (8) 

and the average cost is 

C = ~[Coo(1 - -  Qo) + CaoQo] + (1 - -  ~ ) [ C o l Q 1  -+- C~1(1 - -  Q1)] 

= ~Coo + (I -- ~) Coi -- (I -- ~)(Co~ -- Cll) Tr(pl -- Apo)H (9) 

where 
= ~(Go - C o o ) / ( 1  - ~ ) ( c o l  - G1) (10) 

Since C01 > (;'11, C will be min imum if Tr(pl - -  Apo)/-/is max imum.  
Choose a representat ion in terms of  the eigenstates I ~/~} of  the opera tor  Pl - -  APo, 

whose eigenvalues we suppose discrete, 

(Pl - -  Am) ln~> = n~ IW> (11) 

I t  is then necessary to maximize 

Tr(pl - -  Apo)/7 = ~ %<*/k I / / I  n~> (12) 
k 

and this will be accomplished if 

< , / ~ 1 / / I ~ >  = 1, nk >~ 0, 

<w117 I~k> = O, ~k < 0 

Hence,  the best projection opera tor  to measure  in order to choose between Ho and 
t t l  is 

/7  = ~ l~><n~ I (13) 

~>~0 

Equivalently, p~ - -  ~P0 is measured,  and H 1 is chosen if the outcome is positive. 6 
The probabil i t ies of  error  are 

Qo = ~ < ~  ]po i*?~), Q1 = 1 - y '  <*/k ]p l  [ ~'/~> (14) 
k: k: 

,k>~0 %~>0 

and the min imum average cost is 

Cmin = ~Coo -47, (1 - -  ~) Col - -  (1 - -  ~)(Co~ - -  Cn)  E ~/~ (15) 
k: 

~k>0 

Denote the eigenvalues of the density operators Po and p~ by Pok and P ~ ,  

6 Helstrom a~) A derivation taking into account the possibility that randomization may be necessary 
is given by Helstrom. (~3) 
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respectively, numbering them in descending order. If  the operators are completely 
continuous, these eigenvalues form discrete spectra. A theorem in analysis then 
assures us that the eigenvalues ~Tm of pl -- Apo are also discrete, that its kth positive 
eigenvalue is less than or equal to Pxk, and that its kth negative eigenvalue is greater 
than or equal to --APok. Here, the positive eigenvalues are counted by beginning 
with the largest, the negative ones by beginning with the most negative. 7 

If  the density operators P0 and p~ commute, the eigenvalues of Pl -- )P0 are 
P ~  -- APo~ , and these are positive when Plk/Pok > )t. The best procedure is then to 
measure Po, Pl ,  or a suitable operator commuting with both. When the system is 
found in the kth common eigenstate, choose HI if Plk/Po~ ~> A and H0 if Pl~/Pok < A. 
This is just the likelihood-ratio test of classical decision theory. 

Let the system be a simple harmonic oscillator, such as a single mode of the 
field in our ideal receiver, and assume it to be in thermal equilibrium with an average 
number of photons equal to N o (hypothesis H0) or to N~ (hypothesis HI). The density 
operators are (at) 

Pk = ~ I m )  P~m ( m  T ; P~m = (1 - -  vz~) vk ~ ; vk = N~/(Nk -1- 1); k = O, 1 
m = O  

(16) 

in terms of the eigenstates ] m) of the number operator n. It then suffices to measure n 
itself and to choose hypothesis H 1 when 

[ (1  - v 0 / ( 1  - Vo)](vl/vo)" > ;t 

where m is the outcome of the measurement. 

2.2. The Choice Between Pure States 

There are few pairs of noncommuting operators P0 and pl for which the eigen- 
value problem in Eq. (11) has been solved. One general case of interest is that in which 
the system is in a pure state under each hypothesis (Helstrom, aS) w Bakut and 
Shchurov (is)) 

P0 = [ r [, Px = i ~b~>(~bl [ (17) 

Then are then just two states ] To), I ~/1) satisfying Eq. (11) with nonzero eigenvalues, 
and they are linear combinations of J r and [ ~bi), 

I Wk> : Zko [ %o> -}- Zkl[ ~)>, k = O, 1 ( 1 8 )  

By substituting Eqs. (17) and (18) into Eq. (11), a set of linear homogeneous 
equations for zk0, zkl is obtained. A solution exists only when the determinant of  their 
coefficients vanishes, which yields a quadratic equation for the eigenvalues ~70 and ~h �9 

7 Riesz and Sz.-Nagy. ae) I am indebted to Professor E. Masry for pointing out this theorem. 
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The solution is 

~ = �89 - a )  - ( - 1 )  ~ R ,  

q = 1 - I(~bz I ~bo)[2 

k = 0, 1; R = {[�89 - -  2~)1~ -}- hq} 1/2 ; 

(19) 

The  detection opera tor  to be measured is H = ] rh)(~ h [, the false-alarm and detection 
probabili t ies are 

Q0 = ]&h i ~b0)12 = (Th - -  q)/2R, 

Qa = 1 - Qz = I(~q~ ] ~bz)l 2 = (7/1 -~ Aq)/2R 
(20) 

and the min imum average cost C can be calculated using Eq. (15), in which the sum 
now has a single term ~z. 

In  the choice between two coherent  states I ~0) and I/~x) of  a ha rmonic  oscillator, 
such as the field in a single mode  of  our  ideal receiver, now devoid of  background  
radiation,  the pa ramete r  q entering Eq. (19) is (as) 

q = 1 - -  ](/x I ]/x0)[ 2 = 1 - -  exp(--I/Xl - -  IZo I) ~ 

If, for  instance, /z 0 = 0, the choice is between the presence and the absence of  a 
coherent  signal in the mode,  and the probabil i t ies o f  error  depend, through q = 
1 --  exp(--Ns) ,  only on the mean  number  N~ = 1/zl ] 2 of  signal photons ,  as in Eq. (20). 

2.3.  The C o h e r e n t  S ignal  in T h e r m a l  R a d i a t i o n  

Let hypothesis  H1 assert the presence, H 0 the absence, o f  a coherent  signal o f  
complex ampl i tude /z  in a single mode  of  a cavity in thermal  equil ibrium at absolute 
tempera ture  3- .  I f  the thermal  radiat ion were gone, the oscillator representing the 
mode  would be in a coherent  state J/~). The density opera tors  are, in the P-represent-  
a t ion ,a  9) 

---~ (7rN) -1 ~ exp( - -  ] ~ 12/N)] @ ( ~  ] d ~ ,  p0 
d 

t "  

= (TrN) -1 j exp( - -  I ~ - - /~  12/N)] a)(oL ] d2a, Pl 

N = [exp(hf2/KJ')- 11-1 

(21) 

where h is Planck 's  constant  h/2~, ~ is the angular  frequency of  the mode,  and K is 
Bol tzmann 's  constant.  The diagonalization of  p l -  Ap0, as in Eq. (11), with these 
density operators  remains an outstanding unsolved p rob lem of  quan tum detection 
theory. By t ak ing / z  as real, which voids no generality, and using the coordinate  
(q) representation,  Eq. (11) can be expressed as a homogeneous  integral equation, 
whose kernel is a linear combina t ion  of  Gauss ian  functions (Helstrom, a4) p. 45). 
Evaluat ion of  the probabi l i ty  of  detection would permit  specifying the min imum 
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detectable coherent signal of known phase in the presence of thermal background 
radiation. 

When, as is most reasonable at optical frequencies, the absolute phase of the 
complex signal amplitude is unknown and is assigned a uniform prior distribution 
over (0, 2~r), both P0 and fll are diagonal in the number representation, and the best 
detector simply measures the energy in the mode. a~ 

If  a coherent signal of random phase is present in a number of modes of a 
receiver cavity in thermal equilibrium, a linear transformation of the mode amplitudes 
permits approximate reduction of the problem to the detection of a signal in a single 
harmonic oscillator. (14) For this, it is required that the signal occupy a frequency band 
so narrow that the average number of thermal photons is the same for all the modes 
that it excites. In effect, the optimum processing of the field creates a single mode 
"matched" to the signal, and it is the energy or the excitation level of this composite 
mode that is to be measured. 

The receiver decides that no signal is present whenever the number of photons 
counted in the matched mode is less than an integer M. The false-alarm probability 
is then Q0 = [N/(N + 1)] ~, and the detection probability is 

Qa = 1 - (N + 1) -I exp[--NJ(N + 1)] 

3//--1 

• ~ [N/(N + 1)] TM L~{--NJ[N(N -t- 1)]} (22) 
m=0 

where L~(x) is the mth Laguerre polynomial. (14,~~ 
If  this receiver is designed to meet the Neyman-Pearson criterion, randomization 

will in general be necessary in order to attain the preassigned false-alarm probability. 
There will then be a certain photon count M'  for which hypothesis//1 (signal present) 
is chosen with probability f ,  Ho with probability 1 - - f  For counts less than M', H 0 
is always chosen; for counts greater than M ' , / / 1 .  The required value o f f  is easily 
calculated. Graphs of detection probability versus signal strength for such a receiver 
have been published. (21) 

3. T H R E S H O L D  D E T E C T I O N  

3.1. The Classical Threshold Receiver 

It would be useful if a receiver set to incur a fixed false-alarm probability attained 
maximum detection probability for all expected amplitudes of the signal. This is 
seldom the case with a receiver based on the classical likelihood-ratio test. Only in 
particularly simple instances, as when the signal is completely known except for 
amplitude and phase and is received in Gaussian noise, is the likelihood-ratio test 
uniformly most powerful with respect to signal amplitude. It is usually necessary to 
set it up for a "standard" signal of specific amplitude and to accept less than maximum 
probability of detecting signals of other amplitudes. Furthermore, the likelihood ratio 
is often difficult to generate from a receiver input. 
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In a compromise that is often expedient, the likelihood ratio is replaced by the 
so-called threshold statistic 

U = - ~  In A ( x  1 .... , x ,  ; A)I~=o (23) 

where 

A ( x z  .... , x,~ ; A )  -= p~(xl  ,..., x,~ ; A)/Po(X a ..... x~) (24) 

is the likelihood ratio, with pz(x~ ..... xn ; A )  the pdf of the data when a signal of  
strength A is present; po(xz .... , x~) = p~(xz ..... xn ; 0). The threshold statistic is the 
logarithmic derivative, with respect to A, of the likelihood ratio for detecting a signal 
of strength A, evaluated in the limit of vanishing amplitude. It is compared with a 
decision level U0, and hypothesis H~, "signal present," is selected when U > U0. 
The measure A of signal strength is so chosen that the derivative in Eq. (23) does not 
vanish; it is usually proportional to the energy of the signal. (22) 

This threshold statistic U is most nearly optimum when the decision is based on 
data collected in a large number M of independent trials. Then, compared with the 
decision level U 0 is the sum Ux + (-]2 + "'" + UM of the threshold statistics calculated 
from the data obtained in each trial. The sum has nearly a Gaussian distribution, by 
virtue of the central limit theorem, and the false-alarm and detection probabilities are 
approximately 

Qo = erfc x =- (2~) -1/2 exp(-t~/2)  dt 
X (25) 

Q~ = erfc(x - D V ~ )  

where D is an equivalent signal-to-noise ratio defined by 

D 2 = [E(UI/ /1)  -- E(UI H0)P/Var0 U (26) 

with Var0 U the variance of the statistic U in the absence of the signal. In Eq. (25), 
x is related to the decision level Uo on the sum of  the threshold statistics. 

The false-alarm and detection probabilities will be given approximately as in 
Eq. (25) for any statistic U(x~ ..... x~) when the decision is based on the sum of such 
statistics for a large number M of independent trials. For  a fixed pair of  probabilities 
Q0 and Qa and for M>~ 1, that detector is best for which the equivalent signal-to-noise 
ratio D is largest, for such a detector will require the least number M of independent 
trials. The threshold detector as defined in Eqs. (23) and (24) is best in this sense 
(Helstrom, (1~) p, 273). 

3.2. The Quantum Threshold Receiver 

The quantum counterpart of the likelihood-ratio receiver is one in which the 
optimum detection operator H is measured. It has been found uniformly most 
powerful with respect to signal amplitude only for detecting a known signal of random 
phase in the presence of thermal noise, a detection problem in which, as we have seen, 
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the density operators commute and the classical likelihood-ratio test is optimum. 
Furthermore, the mathematical problem of determining the optimum projection 
operator 17 presents great difficulty in most cases of practical interest. For  these 
reasons, a quantum-mechanical counterpart to the classical threshold statistic is of 
interest. 

The quantum threshold statistic 17o is defined as (is) 

Ho = ~H./~A IA=o (27) 

where H .  is that operator for which the equivalent signal-to-noise ratio D given by 

DZ __-- [Tr pz(A) H .  -- Tr poll.] 2 (28) 
Tr  po/7~ 2 -- (Tr po/7a) 2 

is maximum. This equivalent signal-to-noise ratio is the quantum-mechanical form 
of  the one defined in Eq. (26); pz(A) is the density operator of  the observed system 
when a signal of strength d is present, and Po = p~(0). There is no loss of generality 
if 1-[, is so defined that 

Tr poH,=  0 (29) 

since an arbitrary multiple of the identity operator 1 can be subtracted from H ,  
without changing D 2. 

We define the Hermitian operator O(A) as the solution of the equation 

p~(A) -- Po = �89 O + Opo) (30) 

and we show that 1-[. = O. First of all, 

Tr(px -- Po) = 0 = �89 Tr(po 0 + Opo) = Tr poO 

so that Eq. (29) is satisfied. We now show that H .  = 0 maximizes 

D 2 = [Tr(pl -- Po)/7,]2/Tr(poH, 2) 

Substituting from Eq. (30), we find 

(31) 

[Tr(pl -- po)H~] ~ = [�89 poOH~ § Tr Oporto)] 2 

= [R1 Tr poOH~] 2 <~ ] Tr poOHs l S 

= ]Tr  p]/2OFi~p~/2 ]2 <~ Tr(p~/ZO2p~/2)Tr(/7 po17) 

= Tr(p00 ~) Tr(p0H~ ~) 

by the Schwarz inequality for traces. Hence, D2~< Tr(poO~), with equality when 
U ,  = O. 

The threshold operator is thus 1-1o = 80(A)/SA ]A=o (Helstrom, (1~) P. 275). 
As the solution of the operator equation 

~(po 0 + P0po) ~pl(A)/eA [A=0 = I 1-[ (32) 
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it can be regarded as the symmetrized logarithmic derivative (sld) of pz(A),  evaluated 
a t A  = O. 

In the quantum threshold receiver the operator 17o is measured and the outcome 
compared with a decision level 7r0 set to yield a preassigned false-alarm probability. 
The operator 1-1o is not a projection operator; the equivalent projection operator is 
f~oI 0)(0 I dO, with [ O) the eigenstate o f  17o with eigenvalue O, assumed here part of 
a continuous spectrum. 

3.3. Thresho ld  Detec t ion  of a C o h e r e n t  Signal 

In the cavity that furnishes our model of a quantum receiver, the electric field 
at time t at point r is represented by a quantum-mechanical operator c(r, t), which is 
conveniently decomposed into its positive- and negative-frequency parts, 

~(r, t) = ~+)(r, t) + e(-)(r, t), et-)(r, t) = [~i+>(r, t)] +, 

the one being the Hermitian conjugate of the other. In terms of the mode eigen- 
functions urn(r), which are solutions of the Helmholtz equation with suitable boundary 
conditions at the walls of the cavity, the positive-frequency part of the electric field 
operator is written as (Louisell, (~7~ p. 153) 

E(+)(r, t)  = i ~ (hmm/2) 1/~ amUm(r) exp(--icomt) 
lal 

(33) 

where co m is the angular frequency of mode m. The mode index m accounts for both 
the spatial configuration and the polarization of the mode. 

The operator a m and its Hermitian conjugate am + are the annihilation and creation 
operators for photons in mode m and obey the usual commuation rules, 

aman + - -  an+am = [am, an+] = 3ran, [am, an] = [am +, an +] = 0 (34) 

The number operator for mode m is nm ~ am+am �9 
Suppose that under hypothesis H 0 the cavity is filled with random Gaussian 

radiation characterized by the mode correlation matrix (p, whose elements are 

%m = Tr(poam+ak) (35) 

The density operator P0 for L modes of the field is then, in the P-representation, ~z~ 

po = 7r-L [det tO [-z f ... f exp(_ct+q~-zet)I a)(, ,  l d~La (36) 

where e is a column vector of complex mode variables 

~ ~ ~m~ -~ i~mv , 

~+ is the Hermitian conjugate row vector, ~+ = {... e~m* ""}, and d2Lo~ = I-Im d~ d~ 
is the element of integration in the space of the ~m'S. Here i a) = 1--Ira l e~m) is the 
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Glauber coherent state for a field with complex amplitude ~m in mode m. In thermal 
equilibrium at absolute temperature -Y-, 

%m = Nk ~km, N k = [exp(h~oJKJ-) --  1] -1. (37) 

Were a coherent signal of amplitude A and known phase present in the absence 
of the random radiation, the field would be in a coherent state i AI~), in which the 
complex amplitude in mode m is A/x m . If this coherent signal is superimposed on the 
random radiation described by P0 of Eq. (36), the density operator for the field is 

pz(A) = ~r -z [ det tr 1-1 f ... f exp[-- (a+ -- A~+) ,r _ A~)I[ ~ ) (e  [ a 2L ~ (38) 

which can also be written as (Helstrom, (15) p. 165 IT.) 

pz(A) = V+(A) poV(A) 

V(A) = exp[1AFIo --  A2~+(I 47 2~o)-x~t] 

where 

Ho = 2[1~+(I + 2q~)-la + a+(I + 2qJ)-lb t] 

(39) 

(40) 

with a the column vector of annihilation operators a m , and a + = ( .... am+,...) the 
row vector of  the creation operators for the modes. Here I is the identity matrix. 

The threshold operator for deciding whether the coherent field with amplitudes 
A~ m is present is the operator Ho given by Eq. (41), as can be verified by differentiating 
pl(A) with respect to A, setting A = 0, and comparing with Eq. (32). The outcomes of  
measurements of  the operator Ho have a Gaussian distribution under each hypothesis, 
and the false-alarm and detection probabilities are given exactly by Eq. (25), with x 
related to the decision level ~r0 with which the outcomes are compared. The equivalent 
signal-to-noise ratio D is given by 

D 2 = Tr(p0/-/02) -~ 4A2~+(I + 2r 

For  detection in thermal radiation, this signal-to-noise ratio reduces to 

D ~ = 4 N J ( 2 N  + 1) (43) 

where N~ = EJhs is the average number of photons in the field of the coherent 
signal, and N is given by Eq. (21). For Eq. (43) to hold, it is necessary that the average 
numbers N m of  thermal photons in all modes excited by the signal be nearly equal to 
N, as will be the case when, as usually, the signal occupies only a narrow band of  
frequencies about ~2. 

In the classical limit, the term 2q~ dominates in the factor (I + 2,0) -1 in Eq. (41), 
and the threshold operator becomes, except for an additive constant, proportional 
to the logarithm of the classical likelihood ratio for choosing between hypotheses 
H0 a n d / / 1 .  The false-alarm and detection probabilities for the classically optimum 
detector are given by Eq. (25) with D 2 = 2A2~+q~-l~, or, for thermal equilibrium, 

(42) 

(41) 
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D ~ = 2EJKJ-: Thus, in this case the quantum threshold operator becomes equivalent 
in the classical limit to the optimum likelihood-ratio statistic (Helstrom, (8) Chap. IV). 

3.4. Detection of Gaussian Radiation 

If  the signal field itself has the character of random Gaussian radiation, the 
density operator Pl has the same form as P0 in Eq. (36). We suppose that under 
hypothesis Ho, the mode correlation matrix, defined by Eq. (35), is qo 0 ; under hypo- 
thesis //1 it is 

~o z = ~o 0 + A~o s (44) 

where Aq~ is the mode correlation matrix of the random signal components of the 
field. This is the quantum-mechanical counterpart of what is sometimes called the 
"noise-in-noise" detection problem, and it corresponds to the detection of light 
from an incoherent source. 

The optimum detection operator H for deciding between hypotheses H0 and 
H z remains undiscovered. The threshold operator, however, can be calculated 
(Helstrom, a3) p. 284 ft.). It is an Hermitian quadratic form in the annihilation and 
creation operators of the modes, 

H o = ~ ak+qkmam @ bl = a+Qa + bl  
k,m 

b = --Tr[(I -t- ~o) -z ~ 1  = --Tr(Qq%) (45) 

where the matrix Q is the solution of the equation 

2q~ = q~0Q(I § 'Oo) + (I § q~0) Qq~0. (46) 

The constant b serves to make Tr(poH0) vanish. 
The pdf's, under the two hypotheses, of the outcomes of measurements of Ho 

are difficult to calculate, and only approximate forms of the false-alarm and detection 
probabilities are accessible in the general case. The moment-generating functions of 
the observable Q' = a+Qa are given by (Helstrom, (la) p. 284 ft.) 

h~(z) = Tr p~e~O': exp[--Tr In(I -- foiP)] 

P = exp(zQ) - I, i --- 0, 1 (47) 

The pdf  of the outcome of a measurement of Q' is the inverse Laplace transform of 
h~(--s), and approximation methods, such as the method of steepest descent, are 
available for calculating the false-alarm and detection probabilities. (2~) 

3.5. Reception at an Aperture 

An unsatisfactory aspect of quantum detection theory is its formulation in terms 
of simultaneous measurements of the electromagnetic field in a closed volume. An 
optical instrument, such as a telescope, is more appropriately considered as processing 
the field at its aperture throughout a finite observation interval. An advantage of the 
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threshold operator for detecting a Gaussian random field is that it can be translated 
into a form involving only the field operators at the aperture of the receiver, and it 
can thus be applied to the detection of light from an incoherent source/24) This 
translation is possible because the classical mode amplitudes for the cavity receiver 
after its aperture is closed are linearly related to the field at the aperture itself during 
the observation interval (0, T). 

In order for the threshold operator for detecting incoherent light in the presence 
of thermal background radiation to take a simple form when expressed in terms of 
the aperture fields, it is necessary that the duration T of the observation interval be 
much longer than the reciprocal of the bandwidth W of the light to be detected 
(WT>~ 1), and that the diameter of the aperture ~ be much greater than the cor- 
relation length he/K.Y- of the thermal radiation. Both these conditions are normally 
met. The threshold operator is then proportional to 

f f  d2rl d2r2 dtl dt2 ~b(-)(rz, q) G(rz, tl ; r2, t~) r t2) 
~ o o 

(48) 

in which, for simplicity, a scalar field r t) = r t) + r t) has been assumed. 
Here, 

G(h ,  t 1 ;r~, re) = Tr[pAbl-)(rz, t2) r q)] 

is the mutual coherence function of the signal field, where p~ is its density operator 
in the absence of the thermal background. A similar receiver has been derived by 
Kuriksha on the basis of the classical likelihood ratio. (~a,z6) 

The moment-generating function of the threshold statistic can also be expressed 
in terms of the mutual coherence function of the signal field at the aperture by 
similarly translating the form given in Eq. (47), and from this the false-alarm and 
detection probabilities can be approximated. Details are presented elsewhere. (24) 

4. C H O I C E S  A M O N G  M A N Y  H Y P O T H E S E S  

The choice among M hypotheses, of which the kth asserts "The system has the 
density operator Pk ," k = 1, 2 , . ,  M, can be based on the outcome of a measurement 
of M commuting projection operators/71,172 ,...,/-/~ forming a resolution of the 
identity operator 1, 

/71 + / 7 ~  + ... + rL~ = 1 (49) 

Quantum logic was formulated in terms of projection operators by von Neumann. (eT~ 
Our problem is to pick such a set of operators H~ that the decision among the M 
hypotheses can be made with minimum average cost. It will arise, for instance, in 
designing and evaluating the best receiver for a communication system in which 
messages are coded into an alphabet of more than two symbols, a different signal 
being transmitted for each. 
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Let ~ be the prior probability of hypothesis HI~, and C~j be the cost incurred 
upon choosing H~ when Ha is true. The average cost per decision is 

M M 

C' = ~ Z ~jC,j Tr(pflTi) (50) 
i = l  j = l  

which is to be minimized by a set of commuting projection operators HI~ that satisfy 
Eq. (49). If, in particular, Cii = O, Cij ~ 1, i ~ j, C equals the average probability 
of error. This problem of minimizing C remains unsolved for M > 2, except when the 
M operators p~ commute, whereupon it reduces to a standard problem in classical 
decision theory. 

If, under each hypothesis, the system is in a pure state, p~ = ] ~bk)(~b k 1, the 
projection operators will have the form/-/ j  ----- F ~Tj)(~j [, where the [~/j) are linear 
combinations of the states [ ~bk). The problem of finding what linear combination 
minimizes C is also, for M > 2, unsolved, although it appears simpler than the general 
problem. 

5. E S T I M A T I O N  T H E O R Y  

Bayesian estimation theory determines a strategy 0 ( x ) =  O(xz, x2 ..... xn) for 
estimating a parameter 0 of the pdf p(x; 0 ) = p ( x l ,  x2,..., x,~;O) of the data 
x = (Xl, x2 .... , x~) by minimizing the average cost 

c = f d.x f dO c[O(x), o] p(x; o) (51) 

where z(O) is the prior probability density function of the parameter 0, and c(O, O) 
is the cost associated with a discrepancy between the estimate 0 and the true value of 
the parameter (Helstrom, (8) Chap. VIII; Van Trees, (9) w p. 52). 

Quantum-mechanically, the parameter 0 of a density operator p(O) is estimated 
by means of a resolution of the identity (~7) 

f dE(0') = 1 (52) 

where dE(O') is a projection operator corresponding to the statement, "The value of 
the parameter 0 lies between O' and O' + dO'." Equivalently, we can define such an 
operator 

0 = f O' dE(O') (53) 

that the outcome of a measurement of 0 yields the value of the estimate of the param- 
eter 0. Corresponding to Eq. (51), the average cost associated with the estimate is 

r = f f  z(O) C(O', O) Tr[p(0) dE(O')] dO (54) 
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The best estimator of the parameter 0 is that resolution of the identity dE(0'), or the 
associated operator 0, for which the average cost C is minimum. How to find it 
remains an unsolved problem. If  estimation is viewed as a choice among a continuum 
of hypotheses about the system, Eq. (54) is the counterpart of Eq. (50). I f  there is a 
representation in which the density operators p(O) are simultaneously diagonal, they all 
commute, and the problem reduces to the classical one of minimizing C of Eq. (51). 

Even in classical statistical estimation, the full apparatus of the Bayesian theory 
is seldom called upon, for prior probability density functions of the parameters are 
usually unknown. Instead, estimators are sought that have small or zero bias and at 
the same time incur a small mean-square error over a broad range of true values of 
the parameters. In quantum-mechanical terms, the bias of an estimate (7 of a parameter 
0 of the density operator p(O) is defined by 

b(O) = E ( 0 -  0) = Tr[Op(O)] -- 0 (55) 

where 0 is the operator whose measurement yields the value of the estimate of 0. 
(Parameters are c-numbers.) The mean-square error is 

= E ( 0 -  0)~ = Tr io (0 ) (0  - -  01)21 (56) 

An estimate that has zero bias and attains the minimum value of g for all values of 
the parameter 0 is said to have uniformly minimum variance. 

5.1. The Cram6r-Rao Inequality 

In classical statistics, an inequality due to Cramtr (28) and Rao (29) sets a lower 
bound to the mean-square error attainable by any estimator of a parameter 0 of a 
pdf  p(x; 0), 

0)0  Ei + 

where b'(O) = db(O)ldO, and b(0) is the bias. For unbiased estimates, b'((0) = 0. 
Furthermore, equality is achieved in Eq. (57) by an estimator 0(x) satisfying the 

equation 

e 0) k(0)[0(x) 01 (58) ~-~ In p(x; = 

with k(O) independent of the data x, provided that such an estimator exists. I f  it 
exists, it is unbiased and a sufficient statistic, and it is called an efficient estimator. 

In order for a function 0(x) to be a suff• statistic for estimating 0, it must be 
possible to factor the density function p(x; 0) into a part depending on the data x 
only through 0(x) and a remainder that is independent of the parameter 0, p(x; 0) = 
g[0(x); 0] r(x). Such a factorization is seldom possible. 

An analogous lower bound exists in quantum estimation theory.(30) Let 0 be an 
operator, the outcome of a measurement of which provides an estimate of a parameter 

822/if2-2 
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0 of the density operator p(O). Then the mean-square error is bounded below by 

E(0 -- 0) 2 = Tr[p(O)(O -- 01)21 

~> [1 -k b'(0)] z (Tr pL2) -~ -~ [1 q- b'(0)p (Tr ~ L)- (59) 

where L is the symmetrized logarithmic derivative (sld) of p(O) with respect to 0, 
defined by 

pL -k Lp = 2 ~p/OO (60) 

The inequality becomes an equality if 

L = k(O)(O- 01) (61) 

with k(O) a numerical function of the true value 0 only. This requires the density 
operator p(O) to have the form 

p(O) = V+(0; 0) pbV(O; O) (62) 

where Ok is independent of the parameter 0, and V(O; O) is an operator satisfying the 
equation 

~V/~O = �89 = �89 V ( O -  01) (63) 

and depending on the dynamical variables of the system only through the operator 0, 
of which it is a function. If  such an estimator 0 exists, it is unbiased, attains the 
minimum variance [k(0)] -1, and is termed an efficient estimator (Helstrom, (15) 
p. 164 ft.). 

An example is the estimation of the amplitude A of a coherent field in the presence 
of incoherent Gaussian radiation. The density operator p(A) is then given by pl(A) 
of Eqs. (38) and (39), with Po of Eq. (36) taking the place of pb �9 Comparing Eqs. (40) 
and (63), we find the sld 

L = / 7 0  -- 4A~+(I + 2q~)-11~ 

where 17Io is the threshold operator for detecting the field with mode amplitudes 
A/z= in the presence of the same type of background radiation. This threshold 
operator is given in Eq. (41). 

An efficient estimator of the amplitude A of the field is, by virtue of Eq. (61), the 
operator 

X = [4~+(I q- 2~)-1~1-~/7 o (64) 

and it attains the minimum variance 

E(A -- A) 2 = [4~+(I § 2q~)-l~t] -~ (65) 

For background radiation of the thermal variety and a narrowband signal field, this 
estimator provides a relative variance 

E(.~ -- A)2/A 2 = (2N § l)/4Ns (66) 
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where Ns is the mean number of photons in the signal field and N is the mean number 
of thermal photons per mode. In the  classical limit, this minimum relative variance 
becomes equal to (2Es/KJ)-:, which is the same as for a classical efficient estimator 
of the amplitude of a coherent signal of energy Es and known phase in thermal noise 
of absolute temperature 3". 

Efficient estimators can be expected to be at least as rare in quantum estimation 
theory as in the classical theory, and no general method has been found for producing 
estimators that come close to the lower bound set by the quantum counterpart, 
Eq. (59), of the Cram6r-Rao inequality. 

5.2. Sufficient Statistics 

The density operator p(O) can sometimes be factored as in Eq. (62) into two parts, 
V(O; O) and its Hermitian conjugate, that depend on the dynamical variables of the 
system only through the operator 0, and a third part p~ independent of the unknown 
parameter 0. The operator 0 might then, in analogy with the classical terminology, 
be called a sufficient estimator, or a sufficient statistic for estimation. The operator/Y in 
Eq. (64) is sufficient for estimating the amplitude of the signal field. 

In classical detection theory, the sufficient statistic for estimating the amplitude 
of a coherent signal in Gaussian noise is also sufficient for detecting the signal; 
that is, the likelihood ratio for detection depends on the input to the receiver only 
through that statistic, and the optimum decision about the presence of the signal can 
be based upon it. In the corresponding quantum-detection problem, the amplitude 
estimator ~ does not provide the optimum detection operator, as is evident from the 
treatment given in Section 2 of detection in the absence of thermal noise. For a 
coherent signal in Gaussian noise, the efficient estimator of signal amplitude is related 
rather to the threshold statistic for detection. The concept of a sufficient statistic 
does not, therefore, seem to have the range in quantum-mechanical decision and 
estimation theory that it possesses in the classical theory (Helstrom, ~:5) p. 164ff.). 

5.3. Multiple Estimation 

Thus far, we have treated only the estimation of a single parameter of the density 
operator of the system. In the classical theory, the Cram6r-Rao inequality has been 
generalized to cover the simultaneous estimation of several unknown parameters <28,z9), 
and a corresponding generalization is possible in quantum estimation theory as well.~81~ 
In discussing it, we restrict ourselves, for simplicity, to unbiased estimates. 

Let there be m parameters 0 = (01 ..... 0~) of the density operator p(O) to be 
estimated, and let 0~. be the operator whose measurement yields a number that is 
taken as the estimate of the parameter 0j. Since the estimates are assumed to be 
unbiased, E(0;) = Tr[0jp(0)] = 05 ; we define ~Oj = 05 -- 051 as the operator providing 
the error in the estimate of 0j. The covariance of simultaneous estimates of the 
parameters 0i and 0j is then 

Bij ---- {0,, 0j} ----- �89 Trfp(30, 305 -}- 80~. 80,)1 (67) 
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These covariances form an m • m matrix B, whose diagonal elements are the variances 
of the errors in the estimates. If the operators 0 i are to be measured on the same system, 
they must commute in order for the covariances B~j to have a clearly defined physical 
meaning. (32) 

The sizes of the errors and their correlations are conveniently visualized in terms 
of  the concentration ellipsoid in an m-dimensional space with Cartesian coordinates 
7, = (z I , z~ ,..., zm); its equation is (33> 

ZB-1Z = m + 2 (68) 

where Z is a column vector, Z its transposed row vector. The larger this ellipsoid, the 
greater are the mean-square errors, and an elongation of the ellipsoid in a direction 
aslant to the coordinate axes indicates a correlation among the estimates. 

The generalized Cram6r-Rao inequality for multiple estimation places this 
concentration ellipsoid outside the ellipsoid 

where A = 11A~j [I, 

7,AZ ---- m + 2 (69) 

A~j = 1 Tr p(L~Lj + L~L 0 = Tr(~p/OO~)Lj (70) 

with L~ the sld of p(0) with respect to 0~, defined as in Eq. (60). That is, for any 
column vector Z of m real elements, 7,B-1Z ~< 7,AZ. 

Alternatively, for any column vector Y of real elements, 

YBY ~ YA-1Y (71) 

By picking appropriate values of "~1 -= (yz ..... Ym), one can set lower bounds to 
variances and covariances of unbiased estimates of the unknown parameters. In 
particular, 

B~ = Var 0~ = Tr p(O~ - -  0il)  2 ~ (A-1)ii (72) 

which is the ith diagonal element of the inverse matrix A-L 
The symmetrized logarithmic derivatives needed in the error bounds on both 

single and multiple estimates can be worked out for parameters of coherent fields 
and random Gaussian fields observed in the presence of random Gaussian background 
fields. The density operators then have the forms given by Eqs. (36) and (38). Details 
have been presented elsewhere. (31) 

6. C O N C L U S I O N  

We have omitted from this review the analysis of actual receivers in which 
quantum effects are significant, and the extension of information theory to channels 
embodying such receivers. Optical heterodyne receivers and optical detectors of 
incoherent light have been extensively studied, the types of noise encountered in 
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them have been classified and measured, and methods and data required for their 
design have been compiled. To simplified models, such as the photon-counting 
receivers, classical detection and estimation theory has been applied. (34-a3) Capacities 
and information rates of  communication channels embodying such receivers have 
been calculated in order to extend into the quantum domain the results of  classical 
information theory. ~4-5al 

A review of quantum detection and estimation theory itself can at the present 
time be little more than a recital of unsolved problems. Indeed, a collection of  
ideas in which such fundamental matters as optimum Bayes estimation and 
optimum multiple-hypothesis testing remain unresolved can hardly be called a 
theory at all. Nevertheless, it is eminently reasonable that such a theory should 
exist. I f  it can be elaborated sufficiently, it will permit us to specify the ultimate 
limits that the thermal and quantum properties of nature set to the reliable 
detection of signals and to accurate measurement of parameters of physical 
systems. 
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